Hallo
Ich muss folgende Aufgabe lösen, bin aber unsicher, wo ich ansetzen muss.
Aufgabe:
Bei einem 2×5-Brett werden nacheinander die (farblosen) Felder rot gefärbt, bis zwei Felder mit einer gemeinsamen Kante rot gefärbt sind. In jedem Schritt wird das Feld, das gefärbt wird, zufällig gewählt. Nun wird das folgende Spiel angeboten: Nach jedem Schritt kann der Spieler entscheiden, ob er sich 2 hoch die Anzahl roter Felder in Euro als Gewinn auszahlen lassen will; es gilt jedoch die Bedingung, dass nur dann ein Gewinn ausbezahlt wird, wenn sich keine roten Felder in einer Kante
berühren.
Anders gesagt: Es wird nur ein Gewinn ausbezahlt, wenn das Abbruchkriterium noch nicht erreicht ist. Entscheidet man sich für einen weiteren Schritt (es wird also ein weiteres Feld rot gefärbt), besteht die Gefahr, dass man nichts gewinnt, weil sich dann zwei rot gefärbte Felder in einer Ecke berühren. Bestimme nun die optimale Strategie und den erwarteten Gewinn bei
dieser Strategie
Problem/Ansatz:
Gemäss Aufgabe muss ich ja ab 6 Felder gar nicht mehr weiterrechnen. Auf dem Brett haben ja keine 6 rote Felder Platz ohne sich zu berühren. Ich glaube, die Anzahl an möglichen Kombinationen für 2-5 Felder finde ich mit dem Binomialkoeffizient. Wie finde ich aber nun die Anzahl "schlechter", also angrenzender Felderkombinationen, ohne dass ich mir ein Brett zeichne und jede schlechte Kombination selber suche?