Also Gram-Schmidt
\(c_n=v_n \sum \limits_{i=1}^{n-1}\left(o_j v_n \right) o_j \to o_n= \frac{c_n}{|c_n|}\)
führt auf {o1,o2,o3}
\(\small ONB \, := \, \left(\begin{array}{rrr}\frac{1}{2}&\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{1}{2}&\frac{-1}{2}\\\frac{1}{2}&\frac{-1}{2}&\frac{1}{2}\\\frac{1}{2}&\frac{-1}{2}&\frac{-1}{2}\\\end{array}\right)\)
\( \text{U: erzeuge einen zu ONB}⟂ vektor \, o4= \small \left(\begin{array}{r}a\\b\\c\\d\\\end{array}\right) \to\\ \small ONB\left(\begin{array}{r}a\\b\\c\\d\\\end{array}\right)= 0 \)
\(\small \left\{ \left\{ a = d, b = -d, c = -d, d = d \right\} \right\} \to o4=\left(\begin{array}{r}1\\-1\\-1\\1\\\end{array}\right) \)
Projektion u ⊥ U :{ n = |o4|}
\(u_{<⊥U>} \, := \, u - \left<u, n \right> \; n \;= \, \left(\begin{array}{r}1\\0\\1\\0\\\end{array}\right)\)
vermutlich soll heißen
\(\small \begin{array}{l}\quad \min _{x}\|A x-b\|_{2}^{2} \\ \qquad\left(x_{1}, \ldots, x_{n}\right):=\|A x-b\|_{2}^{2}= \\ \quad=(A x-b)^{T}(A x-b)=x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b= \\ \left|\left|\left(\left(\sum \limits_{j=1}^{n} a_{1, j} x_{j}\right)-b_{1}\right) \right|\right|^{2} \\ \vdots \\ \left|\left|\left(\left(\sum \limits_{j=1}^{n} a_{m, j} x_{j}\right)-b_{m}\right)\right|\right|_2=\sum \limits_{k=1}^{m}\left(\left(\sum \limits_{j=1}^{n} a_{k, j} x_{j}\right)-b_{k}\right)^{2}\end{array}\)
\(f_A \, := 4 \; x1^{2} + 20 \; x2^{2} + 14 \; x3^{2} + 16 \; x1 \; x2 + 12 \; x1 \; x3 + 32 \; x2 \; x3 - 4 \; x1 - 8 \; x2 - 8 \; x3 + 2 + 4 + 0\)
\(\displaystyle 0=\frac{d f}{d x_{i}}=2 \sum \limits_{k=1}^{m}\left(\sum \limits_{j=1}^{n} a_{k, j} x_{j}-b_{k}\right) a_{k, i} \)
\( \left\{ 2 \; \left(4 \; x + 8 \; y + 6 \; z - 2 \right), 2 \; \left(8 \; x + 20 \; y + 16 \; z - 4 \right), 2 \; \left(6 \; x + 16 \; y + 14 \; z - 4 \right) \right\} = 0\)
\(\to \left\{ \left\{ x = 1, y = -1, z = 1 \right\} \right\} \)
oder Matrixgleichung
\( \sum \limits_{k=1}^{m} a_{k, i} \sum \limits_{j=1}^{n} a_{k, j} x_{j}=\sum \limits_{k=1}^{m} a_{k, i} b_{k} \)
\( \left(A^{T} A x\right)_{i}=\left(A^{T} b\right)_{i} \)