Guten Tag,
bei folgender Aufgabe komme ich nicht zur Lösung bzw. kann sie nicht berechnen. Ich habe eine Freundin um Hilfe gefragt, sie kann die Aufgabe auch nicht berechnen. Kann mir bitte jemand helfen und eine Lösungsmöglichkeit mitteilen?
Ein Grundbereich \( \Omega \) wird in der \( x y \) - Ebene durch die Geraden
\( x=0, \quad x=2, \quad y=0, \quad y=\frac{\pi}{2} \)
begrenzt. Skizzieren Sie die Geraden und kennzeichnen Sie die Fläche durch Schraffieren.
Durch welches Doppelintegral wird der Flächeninhalt von \( \Omega \) beschrieben?
Berechnen Sie anschließend das Volumen des Körpers, der zwischen dem Grundbereich \( \Omega \) und der Fläche
\( z=f(x ; y)=x^{2} \cos (y)+1 \)
eingeschlossen ist.
Vielen Dank!
Schöne Grüße
Vera