f(x, y) = 3·x^2 + 2·y^2 - 3·LN(x) - 2·LN(y)
Gradient
f'(x, y) = [6·x - 3/x, 4·y - 2/y]
Hesse-Matrix
f''(x, y) = [3/x^2 + 6, 0; 0, 2/y^2 + 4]
An der Stelle (1, 2)
f''(1, 2) = [3/1^2 + 6, 0; 0, 2/2^2 + 4] = [9, 0; 0, 4.5]
Determinante
DET([9, 0; 0, 4.5]) = 40.5