0 Daumen
655 Aufrufe

Kann mir jemand bei dieser Aufgabe helfen?

Wie bestimme ich Primitivwurzeln von 5353?

Da würden ja extrem große Zahlen rauskommen.

Avatar von

Man kann Primitivwurzeln von Primzahlen bestimmen. Deine Frage ergibt in dieser Formulierung keinen Sinn.

nein kann man nicht man würde mit der zahl 52 weiter rechnen

oder nicht ?

In welcher Restklasse ist das denn?

lul

Man kann Primitivwurzeln von Primzahlen bestimmen. Deine Frage ergibt in dieser Formulierung keinen Sinn.

Man kann Primitivwurzeln Modulo m bestimmen, wenn \( (\mathbb Z/ m\mathbb Z)^* \) zyklisch ist. Das ist nicht nur für Primzahlen der Fall.

Sondern genau für m=2,4

Oder m=p^k

Oder m=2*p^k

Für Primzahlen p>2

Da 53 prim kann man also Primitivwurzeln Modulo 53^53 finden.

Eine Anleitung zur Bestimmung steht auf Wikipedia https://de.m.wikipedia.org/wiki/Primitivwurzel

wie bestimme ich die Primitivwurzel \(53^{53}\)?

Meinst du "wie bestimme ich eine Primitivwurzel mod \(53^{53}\)" ?

Die entsprechende Aufgabe in einem anderen forum :"Bestimmen Sie 5 Primitivwurzeln Modulo 53^53!

https://matheplanet.de/matheplanet/nuke/html/viewtopic.php?topic=263104&post_id=1911860

fas sicher selber Frager

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

0 Daumen
2 Antworten
+2 Daumen
0 Antworten
0 Daumen
1 Antwort

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community