Hallo Leute,
hier die eigentliche Aufgabe. Mein Problem ist unten drunter geschildert. Danke im voraus! :)
Text erkannt:
10 Doppelintegral (5 Punkte)
Es soll ein Flächenintegral
\( \int \limits_{M} \phi(\vec{r}) \mathrm{d} a \)
über das nebenstehend dargestellte Gebiet \( M \) der \( x \) - \( y \)-Ebene berechnet werden. Die Ränder sind Kreisabschnitte deren Radien und Mittelpunkte Sie der Darstellung entnehmen.
Schreiben Sie das Flächenintegral als Doppelintegral mit expliziten Grenzen. Entscheiden Sie die Integrationsreihenfolge selbst und zerteilen Sie ggf. das Integrationsgebiet, wenn Sie es wünschen.
Problem:
Meine Problem ist leider, dass ich nicht wirkliche verstehe, wann genau ich das Integrationsgebiet zerteilen muss. Ich würde gerne bei dieser Aufgabe beide Integrationsreihenfolgen hinbekommen. Ich habe gedacht, dass wenn ich das Integrationsgebiet vertikal parametrisiere und keine Unterbrechungen in den Schnitten auftauchen, ich das Gebiet nicht zerteilen muss (siehe Bild 2). Anscheinend muss ich dies doch noch tun, aber warum? Ich vermute, dass dies nicht geht, da im ersten und zweiten Quadranten jeweils zwei verschiedene Halbkreise auftauchen und somit der y-Wert nicht durch eine Funktion beschrieben werden kann und ich somit gezwungen bin das Integrationsgebiet zu zerteilen. Ist diese Annahme korrekt?
vertikale Parametrisierung (über y, festes x): $$ \int \limits_{x=-2}^{x=0}\int \limits_{y=-\sqrt{4-x^2}}^{y=\sqrt{1-(x-1)^2}}Φ (x;y)dydx+ \int \limits_{x=0}^{x=2}\int \limits_{y=-\sqrt{4-x^2}}^{y=\sqrt{1-(x+1)^2}}Φ (x;y)dydx $$
horizontale Parametrisierung (über x, festes y)
Jetzt wollte ich das Gebiet horizontal parametrisieren. Nun sind die Schnitte auf alle Fälle unterbrochen (siehe Bild 3). Nach meiner Logik müsste ich jetzt das Integrationsgebiet zerteilen. Das Problem ist, dass ich nicht genau weiß, wie ich das für diesen Fall machen soll. Meine Idee für den 2ten Fall wäre, dass Gebiet zu zerteilen: Das erste Integral wäre y-Grenzen von [-2; 1] und x-Grenzen von [Umkehrfunktion eines Viertelkreises im III. Quadranten; Umkehrfunktion eines Halbkreises mit Mittelpunkt (-1;0)], das zweite Integral wäre y-Grenzen von [-2; 1] und x-Grenzen von [Umkehrfunktion eines Viertelkreises im IV. Quadranten; Umkehrfunktion eines Halbkreises mit Mittelpunkt (1;0)].
Nun ist mir noch aufgefallen, dass ich gar nicht weiß, wie man aus dem Halbkreis ein Viertelkreis macht und wie ich die Umkehrfunktion bilden kann von den kleinen Halbkreisen.
Ich hoffe, ihr versteht, was ich meine... Bin über jede Hilfe dankbar.
Wäre auch jedem dankbar, der mir das Zerteilen noch einmal genauer erklären kann. Wann ist es wirklich notwendig?