es ist \( V = \mathbb{R}^2 \) und Teilmengen:
\( W_1 = \{ (x_1, x_2) \in \mathbb{R}^2: x_1^2 + x_2^2 \le 1 \} \)
\( W_2 = \{ (x_1, x_2) \in \mathbb{R}^2: x_1 \ge 0, x_2 \ge 0 \} \)
\( W_3 = \{ (x_1, x_2) \in \mathbb{R}^2: x_1^2 \cdot x_2^2 \ge 0 \} \)
Betrachten wir \( W_j \) mit \( j = 3,4,5 \), so ist \( span(W_j) = \mathbb{R}^2 \).
Ich verstehe dieses Beispiel nicht. Mir ist unklar warum hat ma bei \(span\), \(W_j\) genommen hat. \(W_j\) sind doch Teilmengen von \( \mathbb{R}^2 \) und mit bei \(span\) arbeitet man doch mit den elementen eines Vektorraumes.