Corollary 4. If k is a field, then every ideal of k[x] can be written as ⟨f⟩ for some
f ∈ k[x]. Furthermore, f is unique up to multiplication by a nonzero constant in k.
Proof. Take an ideal I ⊆ k[x]. If I = {0}, then we are done since I = ⟨0⟩. Otherwise, let f be a nonzero polynomial of minimum degree contained in I. We claim that
⟨f⟩ = I. The inclusion ⟨f⟩ ⊆ I is obvious since I is an ideal. Going the other way,
take g ∈ I. By division algorithm, we have g = qf + r, where either
r = 0 or deg(r) < deg(f). Since I is an ideal, qf ∈ I and, thus, r = g − qf ∈ I.
If r were not zero, then deg(r) < deg(f), which would contradict our choice of f .
Thus, r = 0, so that g = qf ∈ ⟨f⟩. This proves that I = ⟨f⟩ .............
Problem/Ansatz:
Leider versteh ich nicht, wirklich wie man darauf kommt dass r = 0 sein muss. Kann mir das jemand erklären?
Vielleicht habe ich irgendwas Wichtiges verpasst. Ich Verstehe nicht warum er r so nochmal r = g − qf aufschreibt. Anscheinend ist das wichtig, nur kann ich den Sinn daraus nicht ziehen.