Aloha :)
Es ist \(\,\pm a\le|a|\,\) und \(\,\pm b\le|b|\,\), daher gilt:$$a+b\le|a|+|b|\quad\text{und}\quad-(a+b)=(-a)+(-b)\le|a|+|b|$$Daher gilt für den Betrag von \((a+b)\):$$|a+b|\le |a|+|b|$$
Damit gilt nun aber auch:$$|a|=|(a\pink{-b})\pink{+b}|\le|a-b|+|b|\,\stackrel{-|b|}{\Longleftrightarrow}\;|a|-|b|\le|a-b|$$$$|b|=|(b\pink{-a})\pink{+a}|\le|b-a|+|a|\;\stackrel{-|a|}{\Longleftrightarrow}\;-(|a|-|b|)\le|a-b|$$
Zusammengefasst heißt das für \(\,(|a|-|b|)\,\):$$\left|\,|a|-|b|\,\right|\le|a-b|$$