Aufgabe:
Zeigen Sie, dass zwischen je zwei Nullstellen der Funktion f : R → R, x 7→ exp(x) sin(x)−1
mindestens eine Nullstelle der Funktion g : R → R, x 7→ exp(x) cos(x) + 1 liegt.
Problem/Ansatz:
Grafisch ist es mir klar, warum das so ist. Es sieht auch so aus, dass zwischen jeder Nullstelle von f ein Extremwert von g liegt. Nur wie beschreibe ich das mathematisch? Ich weiß, wie man mit dem Satz von Rolle beweisen kann, dass zwischen 2 Nullstellen von f ein Punkt existiert, an dem f'(x) = 0 ist. Aber wie benutze ich das, um zu zeigen, dass dies auch für g gilt? Außerdem habe ich festgestellt, dass f nur Nullstellen hat, wenn der Sinus positiv und ist g nur, wenn der Kosinus negativ ist. Aber das beweist ja nicht, dass sie dazwischen liegen müssen.
Ich hatte auch die Idee die Nullstellen von 0 bis 2pi zu berechnen und mit der Periodizität zu argumentieren, aber die Funktionen sind gar nicht periodisch oder? Es sieht auf dem ersten Blick nur so aus.
Wäre sehr dankbar über Hilfe