Aufgabe:
Sei \( D=\left\{(x, y) \in \mathbb{R}^{2} \mid 0 \leq y \leq 5-x^{2}\right\} \) und
\( f: D \rightarrow \mathbb{R}, \quad(x, y) \mapsto 3 x+4 y . \)
Problem/Ansatz:
a) Bestimmen Sie den Rand von D und folgern Sie Kompaktheit.
b) Was ist das Minimum von f auf D und wo wird es angenommen?
c) Zeigen Sie mit Hilfe der Definition für die Ableitung, dass f differenzierbar ist und die Ableitungsmatrix f⃗′(x,y) konstant in x und y ist.