Aufgabe:
Bezeichne mit \( \mathbb{G}_{a}(\mathbb{R}) \) bzw. mit \( \mathbb{G}_{m}(\mathbb{R}) \) die additive bzw. multiplikative Gruppe des Körpers der reellen Zahlen. Zeige, dass \( \mathbb{G}_{m}(\mathbb{R}) \) isomorph zu \( \mathbb{G}_{a}(\mathbb{R}) \times \mathbb{Z} / 2 \mathbb{Z} \) ist.
Problem/Ansatz:
Ich bin mir nicht sicher, ob ich diese Aufgabe so richtig gelöst habe (insbesondere ob ich mein Φ richtig definiert habe)!
Die multiplikative Gruppe \( \mathbb{G}_{m}(\mathbb{R}) \) der reellen Zahlen ohne Null besteht aus den Elementen \( x \in \) \( \mathbb{R} \), für die \( x \neq 0 \). Die additive Gruppe \( \mathbb{G}_{a}(\mathbb{R}) \) der reellen Zahlen ist einfach die Gruppe \( (\mathbb{R},+) \).
Um zu zeigen, dass \( \mathbb{G}_{m}(\mathbb{R}) \) isomorph zu \( \mathbb{G}_{a}(\mathbb{R}) \times \mathbb{Z} / 2 \mathbb{Z} \) ist, definieret man die Abbildung \( \phi \) : \( \mathbb{G}_{m}(\mathbb{R}) \rightarrow \mathbb{G}_{a}(\mathbb{R}) \times \mathbb{Z} / 2 \mathbb{Z} \) wie folgt:
Sei \( x \in \mathbb{G}_{m}(\mathbb{R}) \). Man definiert \( \phi(x)=(\ln |x|, \operatorname{sgn}(x)) \), wobei \( \ln |x| \) der natürliche Logarithmus des Betrags von \( x \) ist und \( \operatorname{sgn}(x) \) das Vorzeichen von \( x \) ist (positive Zahl \( x \) ergibt 1 und negative Zahl \( x \) ergibt -1 ).
Beweis der Bijektivität:
Injektivität:
Angenommen, \( \phi(x)=\phi(y) \) für \( x, y \in \mathbb{G}_{m}(\mathbb{R}) \). Das bedeutet, dass \( (\ln |x|, \operatorname{sgn}(x))= \) \( (\ln |y|, \operatorname{sgn}(y)) \).
Daraus folgt, dass \( \ln |x|=\ln |y| \) und \( \operatorname{sgn}(x)=\operatorname{sgn}(y) \). Da der natürliche Logarithmus eine injektive Funktion ist und das Vorzeichen die Eindeutigkeit beibehält, muss \( x=y \). Somit ist \( \phi \) injektiv.
Surjektivität:
\( \operatorname{Sei}(a, b) \in \mathbb{G}_{a}(\mathbb{R}) \times \mathbb{Z} / 2 \mathbb{Z} \). Wir wollen ein \( x \in \mathbb{G}_{m}(\mathbb{R}) \) finden, so dass \( \phi(x)=(a, b) \).
Setzt man \( x=\operatorname{sgn}(a) \cdot e^{a} \), dann ergibt sich \( \phi(x)=\left(\ln \left|e^{a}\right|, \operatorname{sgn}(x)\right)=(a, \operatorname{sgn}(a))= \) \( (a, b) \). Daher ist \( \phi \) surjektiv.
Da \( \phi \) sowohl injektiv als auch surjektiv ist, ist \( \phi \) bijektiv. Somit ist \( \mathbb{G}_{m}(\mathbb{R}) \) isomorph zu \( \mathbb{G}_{a}(\mathbb{R}) \times \) \( \mathbb{Z} / 2 \mathbb{Z} \).