Text erkannt:
b) \( a_{n}\left(\frac{n^{2}+\cos (n)}{n^{2}-\sin (n)}\right)_{n \in \mathbb{N}} \)
Aufgabe:
Hallo, ich möchte bei dieser Folge den Grenzwert mithilfe des Sandwichsatzes bestimmen. Wie kann ich vorgehen, wenn ich trigonometrische Funktionen wie bei diesem Beispiel habe?
LG
Vielleicht so: Für \(n\ge2\) gilt wegen \(-1\le\sin(n)\le1\) und \(-1\le\cos(n)\le1\)$$\frac{n^2-1}{n^2+1}\le\frac{n^2+\cos(n)}{n^2-\sin(n)}\le\frac{n^2+1}{n^2-1}.$$
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos