\( f( \begin{pmatrix} a\\b\\c \end{pmatrix}) = f( \begin{pmatrix} d\\e\\f \end{pmatrix}) \)
==> \( \begin{pmatrix} ia+b\\2ic \end{pmatrix} = \begin{pmatrix} id+e\\2if \end{pmatrix} \)
==> ia+b = id+e und 2if = 2ic
==> a=d und b= e und f=c
==> \( \begin{pmatrix} a\\b\\c \end{pmatrix})= \begin{pmatrix} d\\e\\f \end{pmatrix} \)
Also injektiv.
Ist die Zielmenge ℂ^2 ? Dann ist es nicht surjektiv, weil z.B. auf
\( \begin{pmatrix} 0\\1 \end{pmatrix} \) nichts abgebildet wird.