0 Daumen
239 Aufrufe

Aufgabe: Folgender Ausdruck soll vereinfacht werden: (1/27)-2/3


Problem/Ansatz:

Lösung (9) und Rechenweg habe ich.

Erster Schritt: Aus dem Ausdruck wird 272/3 gemacht

Meine Frage: Was passiert mit der 1 im Zähler? Warum ändert sich das Vorzeichen?

Avatar von

4 Antworten

0 Daumen

Potenzen mit negativen Exponenten sind mittels

        \(a^{-n} = \frac{1}{a^n}\)

definiert. Grund für diese Definition ist, dass dann die Potenzgesetze, die du von positiven Exponenten kennst, auch für negative Exponenten gelten.

Setze \(a=\frac{1}{27}\) und \(n=\frac{2}{3}\) ein.

Avatar von 107 k 🚀
0 Daumen

Die Regel lautet \((\frac{a}b)^{-c} =(\frac{b}a)^c\)

Also: Das Vorzeichen im Exponenten wird durch die Kehrwertbildung umgedreht, daher wird hier aus minus plus und dann ist es weg.

Und beim Kehrwert von \(\frac1{27}\) wandert die 1 in den Nenner, so was schreibt man aber nicht mehr hin, daher sieht man die 1 nicht mehr.

Avatar von 9,8 k
0 Daumen

Es gilt \(x^{-n}=\frac{1}{x^n}\). Folglich wird \(\left(\frac{1}{27}\right)^{-\frac{2}{3}}=\frac{1}{27^{-\frac{2}{3}}}\) zu \(27^{\frac{2}{3}}\).

Avatar von 18 k
0 Daumen

(1/27)^(-2/3) =  (1/3^3)^(-2/3) = (3^-3)^(-2/3) = 3^(-3*(-2)/3)) = 3^(6/3) = 3^2 = 9

Avatar von 39 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community