Hallo,
Setze:
x'=p
x'' = \( \frac{dp}{dx} \) *p
---->
\( \frac{dp}{dx} \) p = \( p^{3} \) sin(x)
p( \( \frac{dp}{dx} \) -\( p^{2} \) sin(x)=0
->
1.) p=0
x'=p
x'=0
dx/dt=0
dx= 0 dt
x= C1
2.)
\( \begin{array}{l}\frac{d p}{d x}-p^{2} \sin (x)=0 \\ \frac{d p}{d x}=p^{2} \sin (x) \\ \frac{d p}{p^{2}}=\sin (x) \\ -\frac{1}{p}=-\cos (x)+c \\ 1/ p=\cos (x)-c \\ p=\frac{1}{\cos (x)-c} \\ p=x^{\prime}=\frac{1}{\cos (x)-c} \\ \frac{d x}{d t}=\frac{1}{\cos (x)-c} \\ (\cos (x)-c \mid d x=d t \\ \sin (x)-c_{2} x=t+c_{3}\end{array} \)
\( \begin{array}{l}p^=x^{\prime}=\frac{1}{\cos (x)-c} \\ x^{\prime}(0)=1: \quad 1=\frac{1}{\cos (0)-c} \\ 1=\frac{1}{1-c} \\ c=0 \\ x^{\prime}=\frac{1}{\cos (x)} \\ \frac{d x}{d t}=\frac{1}{\cos (x)} \\ \cos (x) d x=d t \\ x(0)=0 ; \quad \sin (x)=t+c . \\ c=0 \\ \sin (x)=t \\ \frac{x_{1}=\pi-\arcsin (t)+2 k \pi}{\frac{x_{2}=\arcsin (t)+2 k \pi}{k \in G^{-}}} \\\end{array} \)