Aufgabe: type of singularity. Auf den Folien gibt es nur pole, removeable singularity und jump discontinuity. Von links habe ich romoveable singularity raus aber von rechts bin ich mir nicht sicher, wie ich weiter machen muss. Es trifft Polstelle zu. Ist das korrekt so?
Text erkannt:
b)
geg: \( D=\mathbb{R} \backslash\{2\}, x_{0}=2 \)
\( f(x)=\left\{\begin{array}{ll} \frac{x^{2}-4}{x-2} & x<2 \\ \frac{x^{2}+4}{x-2} & x>2 \end{array}\right. \)
Rec: 1) Nulistelle Zähler
\( \begin{array}{l} 0=x^{2}-41+4 \\ 4=\left.x^{2}\right|^{2} r \\ \sqrt[3]{4}=x \\ x_{1}=2 \\ x_{2}=-2 \end{array} \)
2) Lineartalctor
\( \begin{array}{l} 10=x^{2}+4 \mid-4 \\ -4=x^{2} \quad 1 \pm \\ \neq \\ \lim \limits_{x \rightarrow 2} \frac{x^{2}+4}{x-2}=\infty \\ \end{array} \)
\( \frac{(x+2)(x-2)}{(x / 2)}=x+2 ! \text { ? } \)
3) limes
\( \lim \limits_{x \uparrow 2} x+2=2+2=41 \)
\( \Rightarrow \) removeable singularity
Problem/Ansatz:
Text erkannt:
b)
geg: \( D=\mathbb{R} \backslash\{2\}, x_{0}=2 \)
\( f(x)=\left\{\begin{array}{ll} \frac{x^{2}-4}{x-2} & x<2 \\ \frac{x^{2}+4}{x-2} & x>2 \end{array}\right. \)
Rec: 1) Nulistelle Zähler
\( \begin{array}{l} 0=x^{2}-41+4 \\ 4=\left.x^{2}\right|^{2} r \\ \sqrt[3]{4}=x \\ x_{1}=2 \\ x_{2}=-2 \end{array} \)
2) Lineartalctor
\( \begin{array}{l} 10=x^{2}+4 \mid-4 \\ -4=x^{2} \quad 1 \pm \\ \neq \\ \lim \limits_{x \rightarrow 2} \frac{x^{2}+4}{x-2}=\infty \\ \end{array} \)
\( \frac{(x+2)(x-2)}{(x / 2)}=x+2 ! \text { ? } \)
3) limes
\( \lim \limits_{x \uparrow 2} x+2=2+2=41 \)
\( \Rightarrow \) removeable singularity