Aufgabe: Konvergieren die Reihen?
\( \begin{array}{l}\sum \limits_{n=0}^{\infty}\left(\frac{6-(-1)^{n}}{4-5(\mathrm{i})^{n}}\right)^{n} \\ \sum \limits_{n=0}^{\infty}\left(\frac{2+\sqrt{n} \mathrm{i}}{\sqrt{n+1}+\mathrm{i}}\right)^{n}\end{array} \)
Problem/Ansatz:
Ich habs mit Quotientenkriterium versucht, also limsup(\( \frac{a_{n+1}}{a_n} \)<1 aber ich komm beim umstellen nach dem aufstellen als \( \frac{\frac{n+1 Zähler}{n+1 Nenner}}{\frac{n Zähler}{n Nenner}} \) nicht weiter, hat wer eine idee? Oder muss ich ein anderes Konvergenzkriterium untersuchen um zu erkennen ob die Folgen