Es seien \( U, V, W \subset \mathbf{R}^{n} \) drei lineare Unterrâume.
Beweisen oder widerlegen Sie (durch ein Gegenbeispiel) die Dimensionsformeln
(a) \( \operatorname{dim}(U \cap(V+W))=\operatorname{dim}(U \cap V)+\operatorname{dim}(U \cap W)-\operatorname{dim}(U \cap V \cap W) \)
(b) \( \operatorname{dim}(U+V+W)=\operatorname{dim}(U+V)+\operatorname{dim}(U+W)-\operatorname{dim}(U+(V \cap W)) \).
Es ist mir bewusst, dass ich mit Basen arbeiten sollte. Ich habe Schwierigkeiten damit, den Beweis zu beginnen. Daher bräuchte ich einen Tipp für den Anfang.