Ich habe anders gerechnet (minimiere \(\int\limits_{-1}^1 (2|x|-(ax^2+bx+c))^2dx\) und erhalte: in P0: \(p(x)=1\), in P1: \(p(x)=1\), in P2: \(p(x)= \frac{15}8x^2+\frac38\).
Da sollte das gleiche rauskommen wie bei Deiner Rechnung. Allerdings hast Du die Polynombasis nicht richtig. Ein OGB sind die Legendre-Polynome, die lauten \(\{1, x, \frac12 (3x^2-1)\}\), die müssen noch normiert werden um eine ONB zu erhalten. Du siehst daran aber schon, dass Dein drittes Polynom nicht stimmt.
Beachte, in (ii) soll nur der Fehler in P0 und P1 berechnet werden. Da in beiden die gleiche Approximation rauskommt, ist der Fehler in beiden gleich, nämlich \(\sqrt{\frac23}\) (Dein Ergebnis stimmt). Dein Fehler für P2 stimmt nicht, weil Deine Approximation nicht stimmt. Aber Glück gehabt, der ist ja gar nicht gefragt. Verwende Deine Bezeichnungen g0, g1, g2 konsequent, dann passiert so was nicht.