Aloha :)
Hier ist die Summe jeder Zeile der Matrix gleich \((-1)\). Daher ist \((-1)\) ein Eigenwert der Matrix und der zugehörige Eigenvektor ist \((1;1;1)^T\). Denn genau dieser Vektor sorgt dafür, dass im Ergebnisvektor die Summe jeder Zeile steht:
$$\left(\begin{array}{rrr}1 & 0 & -2\\0 & 1 & -2\\0 & 0 & -1\end{array}\right)\cdot\begin{pmatrix}\red1\\\green1\\\blue1\end{pmatrix}=\begin{pmatrix}1\cdot\red1+0\cdot\green1+(-2)\cdot\blue1\\0 \cdot\red1+1\cdot\green1+(-2)\cdot\blue1\\0\cdot\red1+0\cdot\green1+(-1)\cdot\blue1\end{pmatrix}=\begin{pmatrix}-1\\-1\\-1\end{pmatrix}=\underbrace{(-1)}_{=\lambda_1}\cdot\underbrace{\begin{pmatrix}1\\1\\1\end{pmatrix}}_{=\vec v_1}$$Die Summe der Diagonalelemente einer Matrix ist gleich der Summe der Eigwenwerte und die Determinante einer Matrix ist gleich dem Produkt der Eigenwerte. Da wir eine Dreiecksmatrix vorliegen haben, ist die Determinante gleich dem Produkt der Elemente auf der Hauptdiagonalen. Das heißt für die Eigenwerte:$$\lambda_1+\lambda_2+\lambda_3=1\quad;\quad \lambda_1\cdot\lambda_2\cdot\lambda_3=-1$$Wir setzen den bereits bekannten Eigenwert \(\lambda_1=-1\) ein und erhalten:$$\lambda_2+\lambda_3=2\quad;\quad \lambda_2\cdot\lambda_3=1\quad\implies\quad\lambda_2=\lambda_3=1$$
Für den doppelten Eigenwert \(\lambda_2=\lambda_3=1\) finden wir die Eigenvektoren durch Lösen des folgenden Gleichungssystems:$$\begin{array}{rrr|r|l}x_1 & x_2 & x_3 & = & \text{Aktion}\\\hline1-\lambda & 0 & -2 & 0 & \lambda=1\text{ einsetzen}\\0 & 1-\lambda & -2 & 0 & \lambda=1\text{ einsetzen}\\0 & 0 & -1-\lambda & 0 & \lambda=1\text{ einsetzen}\\\hline 0 & 0 & -2 & 0 &\Rightarrow -2x_3=0\\0 & 0 & -2 & 0 & \Rightarrow -2x_3=0\\ 0 & 0 & -2 & 0 & \Rightarrow -2x_3=0\end{array}$$Offensichtlich ist das Gleichungssystem gelöst, falls \(\pink{x_3=0}\) ist.
Wir geben alle Lösungen explizit an und identifizieren 2 Basis-Vektoren bzw. 2 Eigenvektoren zum doppelten Eigenwert \(\lambda_2=\lambda_3=1\):$$\begin{pmatrix}x_1\\x_2\\\pink{x_3}\end{pmatrix}=\begin{pmatrix}x_1\\x_2\\\pink{0}\end{pmatrix}=x_1\underbrace{\begin{pmatrix}1\\0\\0\end{pmatrix}}_{=\vec v_2}+x_2\underbrace{\begin{pmatrix}0\\1\\0\end{pmatrix}}_{=\vec v_3}$$