\( \|\frac{x^{2}+3}{2}\|_{2}=\left(\int \limits_{-1}^{1}(\frac{x^{2}+3}{2})^{2} d x\right)^{\frac{1}{2}} \)
Also erstmal das Integral ausrechnen
\( \int \limits_{-1}^{1}(\frac{x^{2}+3}{2})^{2} d x=\frac{1}{4}\int \limits_{-1}^{1}(x^{2}+3)^{2} dx =\frac{1}{4}\int \limits_{-1}^{1}(x^{4}+6x^2 +9) dx \)
\( = \frac{1}{4} [\frac{1}{5}x^5 + 2x^3 +9x]_{-1}^1 = \frac{1}{4} ( \frac{1}{5} + 2 +9-(-\frac{1}{5}-2-9)) \)
\( = \frac{1}{4} \cdot \frac{112}{5} = \frac{28}{5}\)
Also \( \|\frac{x^{2}+3}{2}\|_{2} =\sqrt{\frac{28}{5}} \)