\( f(a) = w \bar{a} = 3 e^{-\pi i} \cdot (2-3 i ) = 3 ( \cos(-\pi)+i \sin(-\pi)) \cdot (2-3 i ) \)
\( = 3 ( -1 + 0 i ) \cdot (2-3 i ) = -3 \cdot (2-3 i ) = -6 + 9i \)
\( f(b) = w \bar{b} = -3 \cdot 2 \cdot \overline{ (\cos{\frac{1}{3} \pi } + i \sin{\frac{1}{3} \pi }) } = -6 \cdot { (\cos{\frac{1}{3} \pi } - i \sin{\frac{1}{3} \pi }) } \)
\( = -6 (\frac{1}{2} - i \frac{\sqrt{3}}{2} ) = -3+ 3i\sqrt{3} \)