0 Daumen
375 Aufrufe

Die Flächenberechnung ist mir nicht ganz klar


IMG_6503.jpeg

Text erkannt:

\( 18 \mathrm{P} \).
5) Glasschale
Eine \( 9 \mathrm{~cm} \) hohe Glasschale entsteht durch Rotation der Funktionen \( f_{1}(x) \) und \( f_{2}(x) \) um die \( y \)-Achse (siehe Skizze). Der Außendurchmesser der Schale beträgt am oberen Ende \( 22,48 \mathrm{~cm} \).
Die Steigung im Punkt \( P \) beträgt \( \frac{25}{18} \).
\( f_{1}(x)=0,06 \cdot x^{2}+3 \text { und } f_{2}(x)=a \cdot \sqrt{x-b} \)
a) Ermittle die Funktionsgleichung von \( f_{2}(x) \). [2 Punkte]

Wenn Aufgabe a) nicht gelöst wurde, rechne mit \( f_{2}(x)=5 \cdot \sqrt{x-8} \) weiter.
b) Berechne die Masse der Schale, wenn für das Glas gilt: \( \rho=2,5 \mathrm{~kg} / \mathrm{dm}^{3} \). [4 Punkte]
c) Die Rotationsfläche, die durch Rotation der Funktion \( f_{1}(x) \) entsteht, soll lackiert werden.
Berechne die Größe dieser Fläche. [2 Punkte]

Avatar von

Laut Titel suchst Du Hilfe bei Aufgabe b).

Laut erstem Satz suchst Du Hilfe bei Aufgabe c).

Für welche Aufgabe suchst Du Hilfe?

2 Antworten

0 Daumen

Lasse die rote und die graue Fläche um die y-Achse rotieren und subtrahiere die Volumina von einer Kreisscheibe (Zylinder) mit dem Radius 11,24 und der Höhe 9:

blob.png

Avatar von 123 k 🚀
0 Daumen

c) Die Rotationsfläche, die durch Rotation der Funktion f1(x) entsteht, soll lackiert werden. Berechne die Größe dieser Fläche.

y =  0.06·x^2 + 3 → x = √(100/6·(y - 3)) → g(x) = √(100/6·(x - 3))

M = 2·pi·∫(g(x)·√(1 + g'(x)^2), x, 3, 9) = 408.9 cm²

Avatar von 488 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community