COS(45°) = ([1, -2, -3]·[-2, 1, z]) / (ABS([1, -2, -3])·ABS([-2, 1, z]))
√2/2 = (- 3·z - 4) / (√14·√(z^2 + 5))
√2·√14·√(z^2 + 5) = 2·(- 3·z - 4)
√28·√(z^2 + 5) = - 6·z - 8
28·(z^2 + 5) = 36·z^2 + 96·z + 64
28·z^2 + 140 = 36·z^2 + 96·z + 64
36·z^2 + 96·z + 64 - (28·z^2 + 140) = 0
8·z^2 + 96·z - 76 = 0
z^2 + 12·z - 19/2 = 0
z = - √182/2 - 6 = -12.7454 (∨ z = √182/2 - 6)