Hallo, werte Freunde der Mathematikergemeinde!
Aufgabe: In den gängigen Lehrbüchern und Formelsammlungen findet man für die Produkte von trigonometrischen Termen nur die Ergebnisse angezeigt, aber keine Hinweise, wie man den Rechenweg hiezu ausführt.
Für mich stellt sich aber die Frage, mit welchen trigonometrischen Formeln oder Umformungen kann man den Term auf der rechten Gleichungsseite herleiten. wenn folgende Aufgabe zu lösen ist:
tan(α)*tan(β) = [tan(α) + tan(β)] / [cotan(α) + cotan(β)]
Problem/Ansatz: Ich habe die Lösung dieser Aufgabe mit folgenden Ansätzen versucht:
a) tan(α) + tan(β) = [sin(α + β)] / [cos(α)*cos(β)]
tan(α) -- tan(β) = [sin(α -- β)] / [cos(α)*cos(β)]
b) tan(α + β) = [tan(α) + tan(β)] / [1 -- tan(α)*tan(β)]
tan(α -- β) = [tan(α) -- tan (β)] / [1 -- tan(α)*tan(β)]
Leider führen meine Ergebnisse nur zu Termidentitäten der linken Gleichungsseite, aber nicht zum Term der rechten Gleichungseite wie er in den Formelsammlungen steht.
Ich ersuche daher die Mathe-Gemeinschaft um schriftliche Anleitung zur Lösung meines Problems.
MfG
Heinz