⚠️ Diese Frage wird gelöscht.
Nachfragen zu einer Aufgabe immer als Kommentar bei der ursprünglichen Aufgabe.
0 Daumen
245 Aufrufe

Aufgabe:

4. Die Punkte \( \mathrm{A}(5|2|-2), \mathrm{B}(1|5|-2) \) und \( \mathrm{C}(-1|1|-2) \) beschreiben die dreiseitige Grundfliche eines schiefen Prismas. Eine Kante des Prismas ist \( \overline{\mathrm{AD}} \) mit \( \mathrm{D}(3|2| 4) \)..4.3 Der Punkt \( K \) ist Mittelpunkt der Kante \( \overline{B C} \), der Punkt \( L \) ist Mittelpunkt der Kante \( \overline{A B} \). Auf der Kante \( \overline{\mathrm{AD}} \) gibt es Punkte \( \mathrm{M}_{\mathrm{t}}(5-2 \mathrm{t}|2|-2+6 \mathrm{t}) \) mit \( t \in \mathbb{R} ; 0 \leq \mathrm{t} \leq 1 \). Ermittele den Wert von \( t \), so dass gilt: \( \overline{\mathrm{LK}} \perp \overline{\mathrm{LM}} \)


Problem/Ansatz:

Ich bitte um eine Musterlösung

Vielen dank

Avatar von

Ein anderes Problem?

Stell deine Frage

Ähnliche Fragen

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community