Aloha :)
Ich schreibe einfach mal meine Gedankengänge zu den Aufgaben auf. Vielleicht hilft dir das besser zu verstehen, wie man ohne langes Rechnen die Entscheidung zwischen "geht" und "geht nicht" treffen kann.
zu 1) geht nicht
Der Nullvektor \(\vec v_2\) hilft mir nicht bei der Bildung einer Linearkombination und kann ignoriert werden, bleibt \(\vec v_1\) übrig: \(\binom{3}{-1}=k\cdot\binom{-1}{3}\). Wegen der ersten Komponente müsste \(k=-3\) sein. Wegen der zweiten Komponente müsste \(k=-\frac13\) sein. Beides zugleich geht nicht.
zu 2) geht
Der Nullvektor \(\vec v_2\) kann wieder ignoriert werden und ich sehe sofort: \(\binom{3}{-1}=-\binom{-3}{1}\).
zu 3) geht
Die beiden Vektoren \(\vec v_1\) und \(\vec v_2\) sind linear unabhängig, also spannen sie den \(\mathbb R^2\) auf, sodass ich jeden Vektor des \(\mathbb R^2\) aus ihnen linear kombinieren kann.
zu 4) geht nicht
Die Vektoren \(\vec v_1\) und \(\vec v_2\) sind linear abhängig, denn \(\vec v_2=-2\vec v_1\). Daher ignoriere ich \(\vec v_2\). Bleibt übrig \(\binom{3}{-1}=k\cdot\binom{1}{-3}\). Wegen der ersten Komponente müsste \(k=3\) sein, wegen der zweiten Komponente müsste \(k=\frac13\) sein. Beides zugleich geht nicht.
zu 5) geht nicht
Die 3 \(\vec v\)-Vektoren sind linear abhängig, denn \(2\vec v_1+\vec v_3=\vec v_2\). Daher ignoriere ich \(\vec v_2\). Die 3-te Komponente von \(\vec a\) ist \(1\), also brauche ich den Vektor \(\vec v_1\). Dadruch fange ich mir aber eine \(1\) bei der ersten Komponete ein. Da in \(\vec v_3\) die erste Komponente \(0\) ist, kriege ich diese \(1\) in der ersten Komponente nicht mehr weg.
zu 6) geht nicht
Die 3-te Komponente aller \(\vec v\)-Vektoren ist \(0\). Daher kann ich nie die \(1\) in der dritten Komponente von \(a\) erhalten.
zu 7) geht
Die drei \(\vec v\)-Vektoren sind linear unabhängig und spannen daher den \(\mathbb R^3\) auf. Daher kann man jeden Vektor des \(\mathbb R^3\) aus ihnen linear kombinieren.
zu 8) geht
Man sieht sofort: \(\vec a=\vec v_1-2\vec v_2\).