\(k(x)=0,25 \cos (0,6x- 3,5π) +2\)
Stammfunktion:
\( \int\limits_{}^{}(0,25 \cos (0,6x- 3,5π) +2)dx \)
\( 0,25\int\limits_{}^{}( \cos (0,6x- 3,5π) +8)dx \)
Einschub:
\( \int\limits_{}^{} \cos (0,6x- 3,5π) dx \)
Substitution
\(0,6x- 3,5π=u\) → \(x=\frac{5}{3}u+\frac{17,5}{3}π\) → \(dx=\frac{5}{3}du\)
\( \int\limits_{}^{} \cos (u) •\frac{5}{3}du=\frac{5}{3}•\int\limits_{}^{} \cos (u) du=\frac{5}{3}•[ sin(u)]\)
Re-Substitution:
\( \int\limits_{}^{} \cos (0,6x- 3,5π) dx =\frac{5}{3}•[ sin(0,6x- 3,5π)]\)