(i)
Zielfunktion(Hauptbedingung):
\( f(x, y)=5-x^{2}-\frac{y^{2}}{2} \) soll extremal werden.
NB:
\( \varphi(x, y)=x+y-2=0 \)
\( f(x, y,λ)=5-x^{2}-\frac{y^{2}}{2}+λ\cdot(x+y-2) \)
\( f'_x(x, y,λ)=-2x+λ \) →1.)\( -2x+λ=0 \)
\( f'_y(x, y,λ)=-y+λ \) →2.)\( -y+λ=0 \)
\( f'_λ (x, y,λ)=x+y-2 \) → 3.)\(x+y-2=0 \)
1.) -2.):
\(-2x+y=0\) → \(y=2x\) ∈ 3.)\(x+2x-2=0 \) →\(x=\frac{2}{3} \) \(y=\frac{4}{3}\)