Die Ölfirma Schnell fördert Öl mittels 17 identischer Plattformen. Die Ölfirma produziert unter der Kostenfunktion
C(q) = 0.003⋅q3+0.005⋅q2+4.5⋅q+16500 wobei q die Gesamtmenge der geförderten Megabarrel (Mbbl) Öl bezeichnet.
Bei einem Preis von 30 GE beträgt die nachgefragte Menge 3276. Bei einem Preis von 498GE verschwindet die Nachfrage.
Stellen Sie die lineare Nachfragefunktion als Funktion des Preises sowie die inverse Nachfragefunktion als Funktion der Menge auf und führen Sie eine Erlösoptimierung durch. Ermitteln Sie damit folgende Größen:
Steigung der inversen Nachfragefunktion:
Sättigungsmenge (d.h. die Nachfrage, wenn das Gut gratis ist):
Nachgefragte Menge an Öl pro Plattform im Erlösoptimum:
Preis im Erlösoptimum:
Maximal erzielbarer Erlös:
Gesamtkosten im Erlösoptimum:
Gewinn im Erlösoptimum (Hinweis: Wird im Falle eines Verlusts negativ.):
wie bekomme ich mein Erlösoptimum? Ich muss doch die erste Ableitung der Erlösfunktion gleich 0 setzen. Da bekomme ich 11481 raus. Wenn ich das aber in die Kostenfunktion einsetze kommt ein Ergebnis in Milliarden Höhe raus. Was mache ich falsch und wie komme ich auf die anderen Lösungen?
Text erkannt:
\( \begin{array}{l} P(30,3276) \\ Q(498,0) \\ D(30)=3276=a-30 \cdot a \\ D(498)=0 \quad=a-498 \cdot a \end{array} \)
\( \begin{aligned} 3276-0 & =(-30 \cdot a)-(-498 \cdot a) \\ 3276 & =468 a \\ 7 & =a \\ 30=a & -3276 \cdot 7 \\ 30 & =\alpha-22932 \\ 22962= & a \end{aligned} \)
\( \begin{array}{l} D(p)=-7 p+22962 \\ D^{-1}(q)=\frac{q-22962}{-7} \\ D^{-1}(q)=-0,14285714 \cdot q+3280,285714 \\ R(q)=D^{-1}(q) \cdot q=-0,14285714 q^{2}+3280,285714 q \end{array} \)
8 von 10
Text erkannt:
\( \begin{array}{l}R^{\prime}(q)=-0,28571428 q+3280,285714 \\ R^{\prime}(q)=0=-0,28571428 q+3280,285714=0 \quad \mid-3280,285214 \\ =\underbrace{-0,285714289}_{\text {Ans }} \quad=-3280,285714 \mid:(\text { Ans } \\ 9 \quad=11481,00 \\ 11481: 17=675,3529412 \\ C(a)=0,003 \cdot 11481^{3}+0,005 \cdot 11481^{2}+4,5 \cdot 11481+16500 \\\end{array} \)