Aloha :)
Du kannst das \(n\) und die \(5\) vertauschen, denn$$5^{\log(n)}=e^{\log\left(5^{\log(n)}\right)}=e^{\log(n)\log(5)}=e^{\log\left(n^{\log(5)}\right)}=n^{\log(5)}$$
Damit wird die Summe zu:$$S=\sum\limits_{n=1}^\infty 5^{-\log(n)}=\sum\limits_{n=1}^\infty\frac{1}{5^{\log(n)}}=\sum\limits_{n=1}^\infty\frac{1}{n^{\log(5)}}=\sum\limits_{n=1}^\infty\frac{1}{n^{\alpha}}\quad\text{mit }\alpha=\log(5)>1$$
Die allgemeine harmonische Riehe \(\sum\limits_{n=1}^\infty\frac{1}{n^{\alpha}}\) divergiert für \(\alpha\le1\) und konvergiert für \(\alpha>1\).
Daher ist die vorliegende Reihe konvergent.