Ich hatte diese Frage schon mal gestellt, jedoch hatte ich da damals keinen richtigen Ansatz gefunden. Ich habe jetzt hier eine neue Idee für diesen Beweis. Ist dieser Beweis richtig zu dem obigen Satz.
Text erkannt:
a) Sei \( \lim \limits_{n \rightarrow \infty} a_{n}=\infty \& \lim \limits_{n \rightarrow \infty} b_{n}=b>0 \), so ist \( \lim \limits_{n \rightarrow \infty} a_{n} b_{n}=\infty \).
Beweis. Wähle ein beliebiges \( \epsilon>0 \) so, sodass \( b-\epsilon>0 \) ist. Da \( \lim \limits_{n \rightarrow \infty} b_{n}=b \) ist, wähle man ein \( N_{\epsilon} \in \mathbb{N} \) so, sodass für \( \left.n \geqslant N_{\epsilon}: b_{n} \in\right] b-\epsilon, b+\epsilon[ \) ist. Sei weiterhin ein \( M>0 \) belie big. Da \( \lim \limits_{n \rightarrow \infty} a_{n}=\infty \) ist, wähle man ein \( N_{\epsilon} \geqslant N_{\epsilon} \), sodacs für \( n \geqslant N_{\epsilon^{\prime}}: a_{n} b_{n}>M(b-\epsilon) \) gilt.
Damit ist \( \lim \limits_{n \rightarrow \infty} a_{n} b_{n}=\infty \).