Text erkannt:
solve \( \left(\left\{\begin{array}{l}500=1250 \cdot x+y \cdot \sqrt{1250 \cdot x \cdot(1-x)} \\ 1250 \cdot x=463\end{array},\{x, y\}\right)\right. \)
\( x=\frac{463}{1250} \) and \( y=\frac{925 \cdot \sqrt{728762}}{364381} \)
solve \( \left(\left\{\begin{array}{l}500=1250 \cdot x+y \cdot \sqrt{1250 \cdot x \cdot(1-x)} \\ 1250 \cdot x=463\end{array},\{x, y\}\right)\right. \)
\( x=0.3704 \) and \( y=2.1671 \)
solve \( \left\{\begin{array}{l}500=1250 \cdot x-y \cdot \sqrt{1250 \cdot x \cdot(1-x)} \\ 1250 \cdot x=538\end{array},\{x, y\}\right) \)
\( x=\frac{269}{625} \) and \( y=\frac{475 \cdot \sqrt{47882}}{47882} \)
solve \( \left(\left\{\begin{array}{l}500=1250 \cdot x-y \cdot \sqrt{1250 \cdot x \cdot(1-x)} \\ 1250 \cdot x=538\end{array},\{x, y\}\right)\right. \)
\( x=0.4304 \) and \( y=2.17074 \)
Ich habe nochmal genau nachgedacht. Ist vielleicht mit plus minus 3 % gemeint, dass die grenzen von p gleich 37 % und 43% sind? Ich habe mal mögliche Gleichungssysteme erstellt, und da komme ich auf einen Wert von 2,17 circa? Ist der Ansatz richtig? Wie kommt man nun auf die Sicherheitswarscheinlichkeit, wenn die warscheinlich zwischen 95% und 99% liegen wird?