Aufgabe:
Sei V ein ℝ-Vektorraum der Dimension 3 und sei Bv=(v1,…,vn) eine Basis von V. Der K-Endomorphismus wird definiert als f:V->V, f(v1)=2v1+2v2+3v3, f(v2)=v2-2v3, f(v3)=2v2-v3. Sei D∈Λn(V)-{0} eine nicht-null Determinantenfunktion auf V, sodass D eine Basis des 1-dimensionalen ℝ-Vektorraums Λn (V) definiert. Sei Df∈Λn(V) die Determinantenfunktion definiert durch Df(w1,…,wn):=D(f(w1),…,f(wn)) für alle (w1,…,wn)∈Vn.
Bestimmen Sie α∈ℝ, sodass Df=α·D.
Wie kann man das machen?