In Teilaufgabe b) sollen wir annehmen das die Kurve rektifizierbar ist, und dann das Gleiche nochmal mit der Formel über die Norm der Ableitung machen. (Das bekomme ich auch hin, nur ohne Fallunterscheidung weil ich immer noch nicht weiß, wozu man die benötigt.)
Hier ist die vollständige Aufgabe:
Text erkannt:
Aufgabe \( 2\left(6+4\right. \) Punkte). Seien \( a, b, a^{\prime}, b^{\prime} \in \mathbb{R} \) mit \( a<b \) und \( a^{\prime}<b^{\prime} \). Weiterhin sei \( \gamma:[a, b] \rightarrow \mathbb{R}^{n} \) eine stetige Kurve und \( \sigma:\left[a^{\prime}, b^{\prime}\right] \rightarrow[a, b] \) eine stetige und monotone Bijektion. Wir betrachten \( \tilde{\gamma}:=\gamma \circ \sigma \).
(a) Zeigen Sie, dass \( L(\tilde{\gamma})=L(\gamma) \) (das beweist Bemerkung 6.12(1)).
(b) Nehmen Sie zusätzlich an, dass \( \gamma \) und \( \sigma \) stetig differenzierbar sind. Zeigen Sie erneut \( L(\tilde{\gamma})=L(\gamma) \) mit der Formel aus Satz 6.9.
Hinweis: Unterscheiden Sie in beiden Teilaufgaben die Art der Monotonie von \( \sigma \).
Und hier ist Bemerkung 6.12:
Text erkannt:
Bemerkung 6.12. (1) Sei \( \gamma:[a, b] \rightarrow \mathbb{R}^{n} \) eine stetige Kurve. Sind \( a^{\prime}, b^{\prime} \in \mathbb{R} \) mit \( a^{\prime}<b^{\prime} \) und \( \sigma:\left[a^{\prime}, b^{\prime}\right] \rightarrow[a, b] \) eine stetige und monotone Bijektion, so ist
\( \tilde{\gamma}:\left[a^{\prime}, b^{\prime}\right] \rightarrow \mathbb{R}^{n}, \quad t \mapsto \tilde{\gamma}(t):=\gamma(\sigma(t)) \)
eine Umparametrisierung von \( \gamma \) mit \( L(\gamma)=L(\tilde{\gamma}) \) (da die Sehnenpolygone von \( \tilde{\gamma} \) die selbsen sind wie die von \( \gamma \) ).
(2) Eine stetig differenzierbare Kurve \( \gamma:[a, b] \rightarrow \mathbb{R}^{n} \) heißt regulär, falls \( \|\dot{\gamma}(t)\| \neq 0 \) für alle \( t \in[a, b] \). Falls \( \gamma \) regulär ist, ist
\( s:[a, b] \rightarrow[0, L(\gamma)], \quad t \mapsto s(t):=\int \limits_{a}^{t}\|\dot{\gamma}(u)\| \mathrm{d} u \)
stetig differenzierbar mit \( s^{\prime}(t)=\|\dot{\gamma}(t)\|>0 \), also ist \( s \) monoton und bijektiv. Somit existiert eine differenzierbare Umkehrfunktion \( \varphi:[0, L(\gamma)] \rightarrow[a, b] \) von \( s \). Für
\( \tilde{\gamma}:[0, L(\gamma)] \rightarrow \mathbb{R}^{n}, \quad t \mapsto \tilde{\gamma}(t):=\gamma(\varphi(t)) \)
gilt
\( \dot{\tilde{\gamma}}(t)=\dot{\gamma}(\varphi(t)) \cdot \varphi^{\prime}(t)=\dot{\gamma}(\varphi(t)) \cdot \frac{1}{s^{\prime}(\varphi(t))}=\dot{\gamma}(\varphi(t)) \cdot \frac{1}{\|\dot{\gamma}(\varphi(t))\|}, \)
also \( \|\dot{\tilde{\gamma}}(t)\|=1 \) für alle \( t \). Man nennt \( \tilde{\gamma} \) die natürliche Parametrisierung für \( \gamma \).