Aloha :)
zu 1) Hier kannst du sofort ein Erzeugendensystem für den Bildraum ablesen:$$f\left(\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\right)=\begin{pmatrix}x_1+x_2\\x_2+x_3\\x_1-x_3\end{pmatrix}=x_1\underbrace{\begin{pmatrix}1\\0\\1\end{pmatrix}}_{\vec v_1}+x_2\underbrace{\begin{pmatrix}1\\1\\0\end{pmatrix}}_{\vec v_2}+x_3\underbrace{\begin{pmatrix}0\\1\\-1\end{pmatrix}}_{\vec v_3}$$
Man sieht sofort, dass \(\vec v_2=\vec v_1+\vec v_3\) ist, sodass die 3 Erzeugenden-Vektoren linear abhängig sind. Der Bildraum wird daher von den beiden linear unabhängigen Vektoren \(\vec v_1\) und \(\vec v_3\) aufgespannt und ist daher 2-dimensional:$$\operatorname{Bild}(f)=\left(\begin{pmatrix}1\\0\\1\end{pmatrix},\begin{pmatrix}0\\1\\-1\end{pmatrix}\right)$$
Gemäß des Dimensionssatzes muss der Kern von \(f\) 1-dimensional sein. Aus der Erzeugenden-Darstellung des Bildes kann man ablesen, unter welchen Voraussetzungen, alle 3 Koordinaten zu Null werden:$$x_2=-x_1\quad;\quad x_2=-x_3\quad;\quad x_1=x_3$$Damit kennen wir alle Vektoren des Kerns:$$\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}=\begin{pmatrix}x_3\\-x_3\\x_3\end{pmatrix}=x_3\begin{pmatrix}1\\-1\\1\end{pmatrix}$$und halten fest:$$\operatorname{Kern}(f)=\left(\begin{pmatrix}1\\-1\\1\end{pmatrix}\right)$$
zu 2) Der Quellraum \(\mathbb R^5\) ist 5-dimensional. Der Zielraum \(\mathbb R^3\) ist 3-dimensional. Die Dimension des Bildes der Funktion muss daher kleiner oder gleich \(3\) sein, denn das Bild der Funktion muss ja in den \(\mathbb R^3\) reinpassen.
Gemäß des Dimensionssatzes$$\operatorname{dim}(\operatorname{Kern}(f))=5-\operatorname{dim}(\operatorname{Bild}(f))$$ist der Kern der Abbildung daher 2- bis 5-dimensional.
Beispiele für die jeweiligen Fälle:$$g(x_1;x_2;x_3;x_4;x_5)=\begin{pmatrix}0\\0\\0\end{pmatrix}\qquad(\text{Kern-Dimension }5)$$$$g(x_1;x_2;x_3;x_4;x_5)=\begin{pmatrix}x_1\\0\\0\end{pmatrix}\qquad(\text{Kern-Dimension }4)$$$$g(x_1;x_2;x_3;x_4;x_5)=\begin{pmatrix}x_1\\x_2\\0\end{pmatrix}\qquad(\text{Kern-Dimension }3)$$$$g(x_1;x_2;x_3;x_4;x_5)=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\qquad(\text{Kern-Dimension }2)$$