Aufgabe:
Lage Beziehungen mithilfe des Normalenvektors untersuchen
hello, ich muss im Unterricht ein Thema präsentieren um meine Note zur verbessern.
Das sind meine Ergebnisse:
Text erkannt:
Lageberiehung von Eberen mit dem Normalenvector
1. Bestimmung des Normalenvektors zur Eberen E
- Der Vektor \( \vec{n}=\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right) \) muss zu den Spannvektoren (der Ebene) orthogonal sein
2. Lageberiehung untersuchen
- Ist der Richtungsuektor Vielfältig zur Normalvektor?
Die Gerade schreidet die Ebene
Skalarprodukt der Richtungsvelutore (der Geraden) muss null ergeben (orthogonal) orthogonal
Liegt der Punkt (Stützvektor der Gerade) liegt nicht auf auf der Ebene? der Ebere [Punktprobe]
Ja
Nein
Gerade \& Ebere
Gerade \& Ebere
sind identisch
sind Parallel
Text erkannt:
Fig. 1 \( \vec{n}=\left(\begin{array}{r}-2 \\ 1 \\ 2\end{array}\right) \) ist nicht der einzige Normalenvektor der Ebene E. Weitere Normalenvektoren sind
z. B. \( \left(\begin{array}{r}-4 \\ 2 \\ 4\end{array}\right) \) oder \( \left(\begin{array}{r}2 \\ -1 \\ -2\end{array}\right) \)
Normalenvektor
Wenn die Gerade g und die Ebene E sich schneiden, kann zusätzlich untersucht werden, oD ale Gerade orthogonal zur Ebene liegt. Dies ist der Fall, wenn der Richtungsvektor der Geraden zu beiden Spannvektoren der Ebene orthogonal ist. Man nennt einen solchen Vektor, der orthogonal zur Ebene E ist, einen Normalenvektor der Ebene E.
Kennt man bereits einen Normalenvektor der Ebene \( E \), so kann die gegenseitige Lage der Geraden \( \mathrm{g} \) und der Ebene E mithilfe des Richtungsvektors \( \overrightarrow{\mathrm{u}} \) der Geraden \( \mathrm{g} \) und des Normalenvektors \( \vec{n} \) der Ebene E untersucht werden.
Wenn \( \vec{u} \) und \( \vec{n} \) Vielfache voneinander sind, schneidet die Gerade g die Ebene orthogonal (Fig. 1). Wenn \( \vec{u} \) und \( \vec{n} \) zueinander orthogonal sind, liegt \( g \) in E oder \( g \) ist parallel zu \( E \).
Lagebeziehungen mithilfe des Normalenvektors untersuchen
Gegeben sind die Geraden \( g: \vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)+t \cdot\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right) \) und \( h: \vec{x}=\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right)+t \cdot\left(\begin{array}{r}4 \\ -2 \\ -4\end{array}\right) \) sowie die Ebene \( E: \vec{x}=\left(\begin{array}{r}2 \\ -4 \\ 2\end{array}\right)+r \cdot\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+s \cdot\left(\begin{array}{r}2 \\ -2 \\ 3\end{array}\right) \)
1. Bestimmen des Normalenvektors zur Ebene \( E \)
Der Vektor \( \vec{n}=\left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right) \) muss zu den Spannvektoren \( \left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right) \) und \( \left(\begin{array}{r}2 \\ -2 \\ 3\end{array}\right) \) orthogonal sein.
Es muss gelten \( \left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)=0 \) und \( \left(\begin{array}{l}n_{1} \\ n_{2} \\ n_{3}\end{array}\right) \cdot\left(\begin{array}{r}2 \\ -2 \\ 3\end{array}\right)=0 \). Dies führt auf das LGS \( \begin{array}{r}n_{1} \\ 2 n_{1}-2 n_{2}+3 n_{3}=0\end{array} \). Eine Lösung dieses LGS ist \( (-2 ; 1 ; 2) \), also ist \( \vec{n}=\left(\begin{array}{r}-2 \\ 1 \\ 2\end{array}\right) \) ein möglicher Normalenvektor der Ebene E.
2. Lagebeziehungen untersuchen
Das Skalarprodukt des Richtungsvektors von g mit \( \vec{n} \) lautet: \( \left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right) \cdot\left(\begin{array}{r}-2 \\ 1 \\ 2\end{array}\right)=0 \). Somit sind die
Vektoren zueinander orthogonal. Die Gerade g liegt in der Ebene E oder ist parallel zu ihr. Die Punktprobe ergibt, dass der Geradenpunkt \( P(1|2| 3) \) nicht auf der Ebene E liegt.
Also sind \( g \) und E zueinander parallel.
Wegen \( \left(\begin{array}{r}4 \\ -2 \\ -4\end{array}\right)=-2 \cdot\left(\begin{array}{r}-2 \\ 1 \\ 2\end{array}\right) \) sind die Richtungsvektoren von \( h \) und der Normalenvektor \( \vec{n} \) Vielfache voneinander. Die Gerade h schneidet die Ebene E orthogonal.
Ich habe dafür diese internetseite benutzt: (oben)
Die Seite war relativ schwer (meiner Meinung nach) erklärt und habe deswegen Angst, dass ich etwas falsch verstanden hab. Könnte jemand bitte ein Blick darauf werden. Danke im Voraus