Aufgabe1.) Bei der Herstellung eines Produktes fallen Fixkosten in Höhe von 2 GE an. Es können maximal 10 ME produziert werden. Bei einer Produktionsmenge von 1 ME betragen die Gesamtkosten 2,6 GE und die Grenzkosten 0,3 GE/ME. Der Zuwachs der Gesamtkosten ist am geringsten, wenn ¿ ME produziert werden.
Aufgabe 2.) Die Gesamtkosten bei der Herstellung eines Produktes lassen sich durch eine s-förmige Gesamtkostenfunktion 3. Grades beschreiben. Bei einer Produktionsmenge von 2 ME ist der Anstieg der Gesamtkosten am geringsten und beträgt 0 GE/ME, die Gesamtkosten betragen dann 18 GE. An der Kapazitätsgrenze bei einer Produktion von 6 ME betragen die Gesamtkosten 82 GE.
Augabe 3.) Bei der Herstellung eines Produktes entwickeln sich die Gesamtkosten bei Ausweitung der jährlichen Produktionsmenge s-förmig. Die maximal mögliche Produktionsmenge beträgt 20 ME, die Fixkosten des Betriebes betragen 1000 GE. Bei einer Produktion x= 5 ME betragen die Gesamtkosten 1625 GE und die Grenzkosten 140 GE/ME. Bei einer Produktionsmenge von 10 ME beträgt die momentane Änderungsrate der Gesamtkosten 295 GE/ME.
Problem/Ansatz: könnt ihr mir helfen, die kostenfunktion von diesen drei Aufgaben herauszufinden. Thema ist funktionssynthese