"Von links nach rechts" geht es hier meiner Meinung nach etwas einfacher als die Ungleichung umzuformen. Vor allem wenn die Ungleichung recht stark zu sein scheint (wie hier: etwas quadratisches sollte recht schnell sehr offensichtlich größer sein als etwas lineares), fällt es mir persönlich etwas leichter von links nach rechts zu rechnen, da ich unnötige Terme meist einfach wegschmeißen kann.
Sei \(n\geq 2\) und die Ungleichung für \(n\) gegeben, dann:
\((n+1)^2=n^2+2n+1 \stackrel{\text{(IV)}}{>}(n+1)+2n+1\stackrel{2n>0}{>}(n+1)+1\), was die Aussage beweist.
Als Übung könntest du einmal versuchen, den von mir gegebenen Beweis in "Umformungsform" zu geben, und dann persönlich zu entscheiden, was du mehr magst.