Aufgabe:
Bestimme zwei verschiedene Geraden \( g \) und \( h \), so dass diese sich nur im Punkt \( \mathrm{S}(1|-4|-2) \) schneiden.
Die Geraden g und h,
\(g: \quad \vec{v}=\left(\begin{array}{c}9 \\ -10 \\ \square\end{array}\right)+r \cdot\left(\begin{array}{c}-4 \\ 3 \\ \square\end{array}\right) \quad \) und
\(h: \quad \vec{v}=\left(\begin{array}{c}13 \\ \square \\ -5\end{array}\right)+s \cdot\left(\begin{array}{c}4 \\ \square \\ -1\end{array}\right) \quad \) mit \( r, s \in \mathbb{R} \)
schneiden sich in Punkt S.
Problem/Ansatz:
Ich komme wirklich nicht weiter. Ich habe versucht wie immer den Punkt S mit der Gerade gleichzusetzen und das LGS aufzustellen, aber hier funktioniert es irgendwie nicht.
Wie kann ich diese Aufgabe lösen?