f(x) = LN(LN(x^2))
2fache Kettenregel
f'(x) = 1/LN(x^2) · 1/x^2 · 2·x = 2/(x·LN(x^2))
f(x) = SIN(X)COS(x) = EXP(COS(X) * LN(SIN(X)))
f'(x) = EXP(COS(X) * LN(SIN(X))) * (-SIN(X) * LN(SIN(X)) + COS(X) * 1/SIN(X) * COS(x))
f'(x) = SIN(X)COS(x) * (COS²(X)/SIN(X) - SIN(X) * LN(SIN(X)))