Funktion und Ableitungen
f(x) = (16·x^2 - 25)/(4·x^2 - 9) = (4·x + 5)·(4·x - 5)/((2·x + 3)·(2·x - 3))
f'(x) = - 88·x/(4·x^2 - 9)^2
f''(x) = 264·(4·x^2 + 3)/(4·x^2 - 9)^3
Symmetrie
Symmetrie zur Y-Achse bedingt durch die geraden Potenzen von x.
Y-Achsenabschnitt f(0)
f(0) = 25/9
Nullstellen f(x) = 0
(4·x + 5)·(4·x - 5) = 0
x = ± 1.25
Polstellen Nenner = 0
(2·x + 3)·(2·x - 3) = 0
x = ± 1.5
Asymptote (Polynomdivision)
f(x) = (16·x^2 - 25)/(4·x^2 - 9) = 4 + 11/(4·x^2 - 9)
y = 4
Grenzwerte
lim (x → -∞) f(x) = 4+
lim (x → -1.5-) f(x) = ∞
lim (x → -1.5+) f(x) = - ∞
lim (x → 1.5-) f(x) = - ∞
lim (x → 1.5+) f(x) = ∞
lim (x → ∞) f(x) = 4+
Extrempunkte f'(x) = 0
- 88·x = 0
x = 0
f(0) = 25/9 → Hochpunkt
Wendepunkte f''(x) = 0
264·(4·x^2 + 3) = 0
Keine Lösungen