Es seien (an) und (bn) beschränkte Folgen reeller Zahlen. Zeigen Sie:
(a) lim sup n→∞ (an + bn) ≤ lim sup n→∞ an + lim sup n→∞ bn,
(b) lim sup n→∞ (an + bn) ≥ lim sup n→∞an + lim inf n→∞bn.
Geben Sie ein Folgenpaar an, für das in (a) < und in (b) > gilt. Leiten Sie ferner
entsprechende Ungleichungen für lim inf n→∞(an + bn) her.
Hinweis: Bereits für Teil (b) beachte man lim inf n→∞ (−cn) = − lim sup n→∞cn.