Welche der folgenden Aussagen gelten? Begründen Sie ihre Entscheidungen.
(1) Exponentialfunktionen (f(x) = a^x sind entweder monoton fallend oder wachsend.
für a >= 0 ist erfüllt
f'(x) = a^x * ln(a) für a < 1 negativ für a = 1 null und für a > 1 positiv
(2) Potenzfunktionen verlaufen durch den Ursprung.
f(x) = x^n
f(0) = 0 ist erfüllt
(3) Exponentialfunktionen verlaufen durch den Ursprung.
f(x) = e^x
f(0) = 1 ist nicht erfüllt
(4) Jede Potenzfunktion ist eine quadratische Funktion.
f(x) = x^3 ist keine quadratische Funktion
(5) Potenzfunktionen mit ungeradem Exponenten haben immer einen punktsymmetrischen Graphen.
f(x) = x^{2n + 1}
f(-x) = -f(x) ist erfüllt
(6) Wurzelfunktionen sind keine Potenzfunktionen.
f(x) = √x = x^{1/2} ist auch eine Potenzfunktion ebenso alle anderen Wurzeln.