Aloha :)
Willkommen in der Mathelounge... \o/
zu i) Den Beweis für die Formel$$\sum\limits_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6}\eqqcolon A(n)\quad;\quad n\in\mathbb N$$führen wir durch vollständige Induktion über \(n\).
Verankerung bei \(n=1\)
Wir zeigen dass die Behauptung für das kleinst-mögliche \(n\in\mathbb N\) richtig ist:$$\sum\limits_{k=1}^nk^2=\sum\limits_{k=1}^1k^2=1^2=1=\frac66=\frac{1\cdot2\cdot3}{6}=\frac{\overbrace{\phantom{(}n\phantom{)}}^{=1}\overbrace{(n+1)}^{=2}\overbrace{(2n+1)}^{=3}}{6}=A(n=1)\quad\checkmark$$
Induktionsschritt von \(n\) auf \((n+1)\)
Wir gehen nun davon aus, dass die Gültigkeit der Formel \(A(n)\) für ein bestimmtes \(n\) bereits gezeigt wurde und folgern daraus, dass auch die Formel \(A(n+1)\) für das darauf folgende \(n\) gilt.
$$\sum\limits_{k=1}^{n+1}k^2=\overbrace{\sum\limits_{k=1}^{n}k^2}^{=A(n)}+(n+1)^2\stackrel{\text{(Ind.Vor.)}}{=}\overbrace{\frac{n(n+1)(2n+1)}{6}}^{=A(n)}+(n+1)^2$$$$\phantom{\sum\limits_{k=1}^{n+1}k^2}=\frac{n(n+1)(2n+1)}{6}+\frac{6(n+1)^2}{6}=\frac{n(n+1)(2n+1)+6(n+1)^2}{6}$$Jetzt klammern wir im Zähler den Faktor \((n+1)\) aus:$$\phantom{\sum\limits_{k=1}^{n+1}k^2}=\frac{(n+1)\cdot\left[\;n(2n+1)+6(n+1)\;\right]}{6}=\frac{(n+1)\cdot[\;2n^2+\overbrace{n+6n}^{=7n}+6\;]}{6}$$$$\phantom{\sum\limits_{k=1}^{n+1}k^2}=\frac{(n+1)\cdot[\;2n^2+\overbrace{4n+3n}^{=7n}+6\;]}{6}=\frac{(n+1)\cdot[\;\overbrace{(n+2)\cdot2n}^{=2n^2+4n}+\overbrace{(n+2)\cdot3}^{=3n+6}\;]}{6}$$Jetzt können wir aus der eckigen Klammer \((n+2)\) ausklammern:$$\phantom{\sum\limits_{k=1}^{n+1}k^2}=\frac{(n+1)(n+2)(2n+3)}{6}=A(n+1)$$Nach der Verankerung gilt die Formel \(A(n)\) für \(n=1\). Nach dem Induktionsschritt gilt sie dann auch für \(n=2\), nach dem Induktionsschritt gilt sie dann auch für \(n=3\), nach dem Induktionsschrit gilt sie dann auch für \(n=4\), nach dem... Die Formel gilt also für alle \(n\in\mathbb N\).
zu ii) Wenn wir uns die Summe$$\sum\limits_{k=1}^n(2k-1)^2$$genauer ansehen, erkennen wir, dass die Quadrate aller ungeraden Zahlen von \(1\) bis \((2n-1)\) addiert werden. Mit Hilfe von (i) können wir diese Summe simulieren, indem wir die Quadratze aller natürlichen Zahlen von \(1\) bis \(2n\) bestimmen und dann die Summe der Quadrate aller geraden natürlichen Zahlen subtrahieren:$$1^2+3^2+5^2+\cdots(2n-1)^2=\left(1^2+2^2+3^2+4^2+5^2+\cdots+(2n)^2\right)$$$$\phantom{1^2+3^2+5^2+\cdots(2n-1)^2}-\left((2\cdot1)^2+(2\cdot2)^2+(2\cdot3)^2+(2\cdot4)^2+\cdots+(2\cdot n)^2\right)$$Das mit Summenformeln geschrieben sieht so aus:$$\sum\limits_{k=1}^n(2k-1)^2=\sum\limits_{k=1}^{2n}k^2-\sum\limits_{k=1}^n(2k)^2=\sum\limits_{k=1}^{2n}k^2-2^2\cdot\sum\limits_{k=1}^nk^2=A(2n)-4\cdot A(n)$$$$\phantom{\sum\limits_{k=1}^n(2k-1)^2}=\frac{2n(2n+1)(4n+1)}{6}-4\cdot\frac{n(n+1)(2n+1)}{6}$$$$\phantom{\sum\limits_{k=1}^n(2k-1)^2}=\frac{2n(2n+1)(4n+1)-4n(n+1)(2n+1)}{6}$$$$\phantom{\sum\limits_{k=1}^n(2k-1)^2}=\frac{2(2n+1)(\;n(4n+1)-2n(n+1)\;)}{6}$$$$\phantom{\sum\limits_{k=1}^n(2k-1)^2}=\frac{2(2n+1)(\;4n^2+n-2n^2-2n\;)}{6}=\frac13(2n+1)(2n^2-n)$$$$\phantom{\sum\limits_{k=1}^n(2k-1)^2}=\frac13n(2n+1)(2n-1)=\frac13n(4n^2-1)$$