Wir lassen erstmal die Integrationsgrenzen weg
u' = e-x -> u = - e-x
v = cos(a*x) -> v' = - a*sin(a*x)
∫e-x *cos(a*x) dx = u*v - ∫(u*v')dx
-> - e-x *cos(a*x) - ∫((-e-x)*(- a*sin(a*x)) dx = - e-x *cos(a*x) - ∫e-x *a*sin(a*x) dx = ∫e-x *cos(a*x) dx
Nochmals partielle Integration für ∫e-x *a*sin(a*x) dx
u' = e-x -> u = - e-x
v = a*sin(a*x) -> v' = a2*cos(a*x)
-> ∫e-x *cos(a*x) dx = - e-x *cos(a*x) - (-e-x *a*sin(a*x) - ∫(-e-x )*a2*cos(a*x) dx)
-> ∫e-x *cos(a*x) dx = - e-x *cos(a*x) + e-x *a*sin(a*x) - ∫e-x *a2*cos(a*x) dx) | + ∫e-x *a2*cos(a*x) dx
-> ∫e-x *cos(a*x) dx + ∫e-x *a2*cos(a*x) dx = - e-x *cos(a*x) + e-x *a*sin(a*x)
-> ∫e-x *cos(a*x) dx + a2 ∫e-x *cos(a*x) dx = e-x *(-cos(a*x) + a*sin(a*x))
-> ∫e-x *cos(a*x) dx*(1 + a2) = e-x *(-cos(a*x) + a*sin(a*x)) = (1/ex)*(-cos(a*x) + a*sin(a*x))
=> ∫e-x *cos(a*x) dx = [(1/ex)*(-cos(a*x) + a*sin(a*x))]/(1 + a2)
-> |[(1/ex)*(-cos(a*x) + a*sin(a*x))]/(1 + a2)|0oo = (1/eoo)*(-cos(a*oo) + a*sin(a*88))/(1 + a2) - ((1/e0)*(-cos(a*0) + a*sin(a*0))/(1 + a2)) = 0 - 1*(-1 +0)/(1 + a2) = 1/(1 + a2)