0 Daumen
8,6k Aufrufe
warum verschwindet q^k?
und warum plötzlich das q^{n+2}.
danke

EDIT: Zu zeigen ist:∑qk = (1-qn+1) / (1-q) Summenformel für geometrische Reihen.
Avatar von 2,1 k

Warum funktioniert das mit dem bild nicht?

Um welchen Beweis geht es?

1 Antwort

+1 Daumen
 
Beste Antwort
∑ qk =   1+ q+q² +q³ ...       für q∈ℝ !
Partialsumme  sn = 1+q+    .... qn   , für q= 1 ist  sn = 1+1+.....1 → n+1 !! Die Reihe für q=1 konvergiert nicht .
Ist q ungleich 1 , dann sn 1+q +q²... qn  und qsn = q + q² ....qn +qn+1  ,beide Gleichungen Differenz bilden ---->
(1-q) s= 1-q n+1 , damit gilt für  IqI <1   lim qn = 0.
Daraus folgt ∑ qk = 1/ 1-q  für q <1 !


Avatar von 2,3 k

Setze zum Schluss noch eine Klammer, damit das eindeutig ist. 

∑ qk = 1/ (1-q) für |q|<1

danke

den einen schritt verstehe ich nciht

∑qk = 1-qn+1 / (1-q)

jetzt n +1

n+1      n

∑qk  + ∑ qk + qn+1 = 1-qn+1 / (1-q) = ( 1-qn+1 +qn+1 - qn+2)   / (1-q) = 1-qn+2 / (1-q)

k=1      k=1

warum genau ist das so?

und warum ist das ein beweis?


freundliche grüße

immai

immai: Da fehlen ein paar Klammern im Induktionsschritt: n---> n+1

∑qk = (1-qn+1) / (1-q)

jetzt n +1

n+1      n 

∑qk  = ∑ qk + qn+1           | Induktionsvoraussetzung verwenden

k=1      k=1

= (1-qn+1) / (1-q) + q^{n+1}          |gleichnamig machen

(1-qn+1) / (1-q) + (qn+1 (1-q)) / (1-q)        |ausmult.

(1-qn+1) / (1-q) + (qn+1-qn+2)) / (1-q)        |Bruchaddition

= ( 1-qn+1 +qn+1 - qn+2)   / (1-q) 

= (1-qn+2/ (1-q)

Warum ein Induktionsschritt zu einem Induktionsbeweis gehört, sollte aus der Theorie dazu klar sein.

Eine Verankerung brauchst du auch.

Ein anderes Problem?

Stell deine Frage