Vom Duplikat:
Titel: Geometrische Summenformel beweisen mit 2 Variablen
Stichworte: summenformel,geometrische,induktion
Hi LLeute,
folgende Formel beweisen (also mit Induktionsanfang, Induktionsschritt usw)
$$\sum _{ j=m }^{ n }{ { q }^{ j } } =\frac { { q }^{ m }-{ q }^{ n+1 } }{ 1-q } \quad (q\epsilon R\setminus \left\{ 1 \right\} fest$$
Mein Problem dabei ist, dass in der unteren Grenze eine Variable steht und ich weiß nicht wie ich das jetzt rechnen soll.
Kann mir vielleicht bitte jemand helfen???
hier nochmal die allgemeine geometrische Summenformel:
$$ \sum _{ j=0 }^{ n }{ { q }^{ j } } =\frac { 1-{ q }^{ n+1 } }{ 1-q } \quad (q\epsilon R\setminus \left\{ 1 \right\} fest)$$