T ( t ) = Tu + ( To - Tu ) * e^{-k*t}
Tu = 18 °
t = 3 min
To = 100 °
T ( 3 ) = 60
Ermittlung von k
60 = 18 + ( 100 - 18 ) *e^{-k*3}
( 82 ) *e^{-k*3} = 42
e^{-k*3} = 42 / 82 | ln ( )
-k*3 = ln ( 42 / 82 ) = -0.669
-k = -0.669 /3
k = 0.223
t für 18 + 2 = 20 °
20 = 18 + ( 100 - 18 ) * e^{-0.223*t}
e^{-0.223*t} = ( 20 - 18 / ( 100 - 18 ) = 0.02439
-0.223*t = ln ( 0.02439 ) = -3.71357
t = 16,65 min
t = 16 min 38 sec
Probe
20 = 18 + ( 100 - 18 ) * e^{-0.223*16.65}
20 = 18 + 2
2.)
U ( t ) = Uo * e^{-t/[R*C]}
R = 10 Ohm
U ( 1 ) = 44.4 V
U ( 2 ) = 6 V
Ergebnisse
C = 0.05 F
Uo = 328,56 V
t = 2.8952 s für 1 Volt
U ( 1 ) = 44.4 = Uo * e^{-1[10*C]}
U ( 2 ) = 6 = Uo * e^{-2[10*C]} | beide Gleichungen dividieren, Uo entfällt
-----------------------------------------
44.4 / 6 = e^{-1[10*C]} / e^{-2[10*C]}
7.4 = e^{-1[10*C]-(-2[10*C])}
7.4 = e^{-1[10*C]+2[10*C]}
7.4 = e^{1[10*C]} | ln ()
ln (7.4 )= 1/(10*C)
10 * C = 1 / ln (7.4 )
C = 0.05 F
U ( 1 ) = 44.4 = Uo * e^{-1[10*0.05]}
44.4 = Uo * 0.1353
Uo = 328 V
U ( t ) = Uo * e^{-t/[R*C]}
1 = 328.56 * e^{-t/[10*0.05]}
1 / 328.56 = 0.0030436 = e^{-t/[10*0.05]} | ln ( )
-5.7947 = -t / 0.5
-t = -2.897
t = 2.897
mfg Georg